Top 10 Energy Conservation Opportunities

Reduced Flow Hoods to Fuel Cells

presented by:

† Joseph A. Limpert, P.E. Mechanical Engineer

Total Purchased Energy Consumption

(Typical Research Building)

Losses (2.7%)

Building & Environment Systems (38.6%)

Almost 72% of all Energy Consumption used for HVAC & Environmental Systems

Agenda

†Points of Focus

- 10. Reduced Flow Hoods
 - 9. Air Change per Hour Reset
 - 8. Heat Pipe
 - 7. Mini-Cogen
 - 6. Enthalpy Wheel
 - 5. Daylight Harvesting
 - 4. Commissioning

Agenda

- **†** "Not Quite Ready for Prime Time"
 - 3. T-5 vs. T-8
 - 2. Recirculating Lab Air
 - 1. Fuel Cells

Points of Interest

† Typical Flows (Based on 100 fpm)

6' hood → 7<u>85 cfm</u>

* NFPA 1996 40 cfm / Linear Feet of Bench

6' hood → 240 cfm

* NFPA 2000 25 cfm / Square Foot of Work Surface Within Hood

#8 Point of Focus

Heat Pipe

What is a Wrap Around Heat Pipe?

*A refrigerant based heat exchanger (coils) located or "wrapped around" both sides of a cooling coil. The first coil yields cooling and the second coil produces reheat.

Applications

- † Clean Rooms, Animal Holding, Wet Laboratories
- *Use in Any High Percentage
 Outside Air-High Air Change
 Zone with Low Internal Heat
 Generation
- **†** Use to Reduce Cooling and Reheat Costs

Design Considerations

† Cooling Mode Specific

† Space in Air Handling Unit Must be Allocated

†Increased Pressure Drop

†No Moving Parts

Types of Wrap Around Heat Pipes

† Controllable

† Fixed

Controllable Heat Pipe

Case Study - Controllable Heat Pipe

† Pfizer

† Vivarium

†Terre Haute, Indiana

Building 551 Vaccine Research Center

†110,000 CFM / 100% Outdoor Air

Cost Analysis - Controllable Heat Pipe

Cost of Heat Pipes \$125,000

Free Reheat Controlled from 0 – 15° F

Entering Air Enthalpy Reduced 0 - 24%

Energy Savings \$40,300/yr.

Simple Payback 3.0+ Years

Case Study - Fixed Heat Pipe

†UF Brain Gene Vector Laboratory

†cGMP Laboratory

† Gainesville, Florida

†12,000 CFM / 65% Outdoor Air

Cost Analysis - Fixed Heat Pipe

Cost of Heat Pipes \$21,000

Free Reheat 0 – 8° F

Entering Air Enthalpy Reduced 0 – 18%

Energy Savings \$9,800/yr.

Simple Payback ≈ 2.1 Years

#7 Point of Focus

Mini-Cogen

Typical Steam Pressure Reduction

Mini-Cogen System

Micro-Cogen System

† Case Study - Chiron

Chiron Building 3		Chiron Building 4	
350,000 s.f. Biological/Vivarium/ Chemistry/Office		300,000 s.f. Biological/Chemistry/ Office	
100 KW	Size	70 KW	
\$155,000	First Cost	\$155,000	
\$115,000	Annual Savings	\$60,000	
1.3 yrs	Simple Payback	2.5 yrs	

50-150 kW Similar to Chiron Building 4 and Building 3

Lighting and Associated HVAC Cost as a Percentage of Total Energy Cost

3 "Not Quite Ready for Prime Time"

T-5 vs T-8

T-5 vs T-8

†What is a T-5?

†What is a T-8?

Direct/Indirect Fixtures in Laboratories

†Chiron

†Bayer 27 and 36

†SC Johnson

†Immunex

Lumens

Lamp Cost

University of Cincinnati - CARE

† Comparison Model 2,203 sq. ft.

† ASHRAE 90.1 (LEED Requirements)

†1.8 Watts/Square Feet

Case	Fixture	Lamp	Watts/sq.ft.
1	1x4 Parabolic Louvered Trotter	T-8 Long	1.86
2	Suspended, Direct/Indirect Louvered	T-8 Long	1.86
3	Suspended, Direct/Indirect Louvered	T-5 Long	1.6

T-5 Lamp

- **†** New Technology
- **†** Direct/Indirect Application
- † Layout Dependent
- **†** More Reflectance Efficiency
- **†** Potential Fixture Count Reduction
- **†** Energy Cost Reduction
- **†** Something to Watch!

#1 "Not Quite Ready for Prime Time"

Fuel Cells

What are Fuel Cells?

†Electrochemical device converting fuel directly into electrical energy without the need for combustion.

Fuel Cells - How Do They Work?

Fuel Cells - How Do They Work?

Fuel Cells.exe

NASA - Space Experiments Research Processing Laboratory

*Research into Sustainable Micro-Environment

†Fuel Cell Leader

†Desire to be a "Model" Project

Space Experiments Research Processing Laboratory

NASA *SERPL* - Life Cycle Cost Analysis

Project Equipment Comparative Alternatives	Initial Cost (Delta) Present Value	Life Cycle Cost Present Value
†600 Ton Electric Centrifugal Chiller †6280 mbh Hot Water Boiler †1250 KW Diesel Generator	\$8,500	\$41,000
†600 Ton Natural Gas Direct Fired Chiller w/ Heat Recovery †800 KW Generator	\$11,000	\$76,000
† 1250 KW Fuel Cell † 600 Ton Centrifugal Chiller † 3800 mbh Hot Water Boiler	\$2,800,000	\$2,834,000

Fuel Cells - Advantages

- **†** High Quality Power
- **†** High Level of Reliability
- **†** Continuous Operation
- **†** Low Emissions and Noise
- **†** Potential for Cogeneration

Fuel Cells - Disadvantages

† First Cost

† Limited Availability

† Relatively New Commercial Market

Future of Fuel Cells

Cars

Cell phone battery

- **†**Reduced Cost Through Mass Production
- †Increase in Heat Quality for Cogeneration

O & A

